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Abstract
We review recent progress in analysing wave scattering in systems with both
intrinsic chaos and/or disorder and internal losses, when the scattering matrix
is no longer unitary. By mapping the problem onto a nonlinear supersymmetric
σ -model, we are able to derive closed-form analytic expressions for the
distribution of reflection probability in a generic disordered system. One
of the most important properties resulting from such an analysis is statistical
independence between the phase and the modulus of the reflection amplitude
in every perfectly open channel. The developed theory has far-reaching
consequences for many quantities of interest, including local Green functions
and time delays. In particular, we point out the role played by absorption as a
sensitive indicator of mechanisms behind the Anderson localization transition.
We also provide a random-matrix-based analysis of S-matrix and impedance
correlations for various symmetry classes as well as the distribution of
transmitted power for systems with broken time-reversal invariance, completing
previous works on the subject. The results can be applied, in particular, to
the experimentally accessible impedance and reflection in a microwave or an
ultrasonic cavity attached to a system of antennas.

PACS numbers: 05.45.Mt, 24.60.−k, 42.25.Bs, 73.23.−b

1. Introduction

Propagation of electromagnetic or ultrasonic waves in billiards [1], compound-nucleus
reactions [2], scattering of light in random media and transport of electrons through quantum
dots [3, 4] share at least one feature in common: in all these situations one deals with an
open wave-chaotic system studied by means of a scattering experiment, see figure 1 for an
illustration. Here, we have a typical transport problem where the fundamental object of interest
is the scattering matrix S, which relates linearly the amplitudes of incoming and outgoing fluxes.
However, under real laboratory conditions there are a number of different sources which cause
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Figure 1. A sketch of a typical experimental setup with microwave billiards. A flat chaotic cavity is
feeded with microwaves through an attached coaxial cable (i.e. a scattering channel). On average,
1 − T part of the incoming flux, where T � 1 is the so-called transmission coefficient, is reflected
back directly from the cable–cavity interface (port) without exciting long-lived resonances in the
cavity. If the cavity is thin enough then only a transverse electric wave can propagate inside. The
electric field has only a vertical component, which is uniform in vertical direction and distributed
nontrivially in the plane. Therefore, there is a voltage between plates as well as a current due to
the in-plane magnetic field. The impedance is a quantity which relates linearly the port voltage
to the port current. Fluctuations of eigenmodes and eigenfrequencies result in fluctuations of the
impedance or S-matrix, as the driving frequency or port position is changed.

that a part of the flux gets irreversibly lost or dissolved in the environment. As a result, we
encounter absorption and have to handle the S-matrix, which is no longer unitary. Statistics
of different scattering observables in the presence of absorption are nowadays under intensive
experimental and theoretical investigations, starting from early experiments on reflection and
energy correlations of the S-matrix [5, 6]. More recently, total cross-sections [7], distributions
of reflection [8] and transmission [9] coefficients as well as that of the complete S-matrix
[10] in microwave cavities, properties of resonance widths [11] in such systems at room
temperatures, dissipation of ultrasonic energy in elastodynamic billiards [12] and fluctuations
in microwave networks [13] became experimentally available. Theoretically, statistics of
reflection, delay times and related quantities were considered first in the strong [14] and then
weak [15] absorption limits at perfect coupling and very recently at arbitrary absorption and
coupling for several symmetry classes [16–24].

Another insight to the same problem comes from looking at it not from the ‘outside’, but
rather from the ‘inside’. Then the prime object of interest turns out to be the impedance Z
relating linearly voltages to currents at the system input [25, 26], see figure 1. By properly
taking into account the wave nature of the current [27, 28] the cavity impedance can be seen as
an electromagnetic analogue of Wigner’s reaction matrix of the scattering theory. This can be
easily understood qualitatively through the well-known equivalence of the two-dimensional
Maxwell equations to the Schrödinger equation, the role of the wavefunction being played
by the electromagnetic field (the voltage in our case). Then the definition of the impedance
becomes formally similar to the definition of the reaction matrix (which relates linearly the
scattering wavefunction to its normal derivative on the boundary). The impedance is, therefore,
related to the local Green function of the closed cavity and fluctuates strongly due to chaotic
internal dynamics.

The imaginary part of the local Green function (which is proportional to the real part
of Z) is well known as the local density of states (LDoS) and has a long story of studies in
disordered electronic systems, see [29] for a recent review. Actually, a closely related quantity
emerges in the context of spectra of complex atoms and molecules where it has the meaning
of the total cross-section of indirect photoabsorption [30] (see also [31, 32]). It also appears in
studies on spontaneous light emission by atoms placed in chaotic cavities [33]. As to the real
part of the Green function, it seems to have no direct physical meaning in mesoscopics while
it has the meaning of reactance in electromagnetics, where both real and imaginary parts are
experimentally accessible.
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In this paper we discuss an approach developed recently by us in short communications
[21, 22, 34] which treats both inside and outside aspects of the problem on an equal
footing. In this capacity it provides a uniform and deeper understanding of various results
on absorptive scattering obtained earlier in [16–18]. In particular, the method allows one
to study very efficiently the distribution of the local Green function (complex impedance) at
arbitrary absorption and to relate it to that of reflection, thus linking somewhat complementary
experiments [10] and [25] together. Although calculations are most explicit and simple for
fully chaotic systems, when one can rely upon the random matrix theory (RMT), our method
actually has relevance in a much broader context beyond RMT that involves many interesting
aspects of disordered mesoscopic systems with absorption, including effects of the Anderson
localization. From that point of view, the method opens an attractive possibility to look at
some long-standing problems (e.g. statistics of time delays) from a different perspective, see
[35] as well as subsections 4.1.6 and 4.1.7.

2. Reflection, time delays and resonance spectrum

In this section, we provide a short description of the scattering approach to the problem. The
resonance energy dependence of observables becomes explicit in the well-known Hamiltonian
approach to quantum scattering, which was developed first in the context of nuclear physics
[2, 36–38] and can be easily adopted for models emerging in quantum chaotic scattering
and mesoscopic physics, see e.g. [4, 39–41] for reviews. This framework turns out to be
also most suited to take a finite absorption into account. The starting point is the following
fundamental relation between the resonance part of the scattering matrix and the Wigner
reaction matrix K:

S(E) = 1 − iK(E)

1 + iK(E)
, K(E) = 1

2
V †(E − H)−1V. (1)

The Hermitian Hamiltonian H of the closed system gives rise to N real energy levels
(eigenfrequencies). Those are coupled to M continuum channels via the N × M matrix
V of coupling amplitudes V c

n (n = 1, . . . , N, c = 1, . . . ,M), and as a result are converted to
N complex resonances. To see this, we expand (1) in a Taylor series in K and, after regrouping
the terms, bring the resulting expression to another well-known form

S(E) = 1 − iV † 1

E − Heff
V, Heff = H − i

2
V V † (2)

for the S-matrix. The effective Hamiltonian Heff emerging here characterizes the open system
and is the non-Hermitian counterpart of H. The factorized structure of the anti-Hermitian part
is necessary to ensure the unitarity of S. The coupling amplitudes V change very slowly with
the energy (far from the channels thresholds) and one can safely consider them to be energy
independent. In such a resonance approximation the complex eigenvalues En = En − i

2�n of
Heff , with the energies En and escape widths �n > 0, are the only singularities of the S-matrix
in the complex energy plane. As required by causality [42], they are located in the lower
half plane and correspond to the long-lived resonance states formed on the intermediate stage
of a scattering process. The corresponding (left and right) eigenvectors form the so-called
bi-orthogonal system. Recent discussion concerning applicability of the effective Hamiltonian
approach to potential scattering problems (like those with cavities) can be found in [43–46].

Flux conservation requires S(E) to be unitary at the real values of E. It is useful to
define at real � the following matrix:

R�(E) ≡ S†
(

E − 1

2
�

)
S

(
E +

1

2
�

)
= 1 + i�V † 1

E − 1
2� − H†

eff

1

E + 1
2� − Heff

V. (3)
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The second equality here results from the substitution of (2) and then making use of the
identity iV V † + � = (

E + 1
2� − Heff

) − (
E − 1

2� − H†
eff

)
which leads to cancellations of

the cross-terms. Expression (3) tends to unity as � → 0 and it is the Wigner–Smith time-
delay matrix [47, 48] Q(E) = −iS†(E) d

dE
S(E) = −i d

d�
R�(E)

∣∣
�=0 (we put h̄ = 1) which

determines the unitarity deficit of R� to the linear order [49]:

R�(E) � 1 + i�Q(E) + O(�2), Q(E) = V † 1

(E − Heff)†
1

E − Heff
V. (4)

Such a factorized representation [50] for the time-delay matrix (which no longer contains the
energy derivative) is a consequence of the resonance approximation considered. It serves to
make a connection of time delays to the resonance spectrum most explicit. The matrix element
Qcc′ = (b†b)cc

′
may be physically interpreted as the scalar product (or ‘overlap’) between the

internal parts bc = (E − Heff)
−1V c of the scattering wavefunctions for waves incident in the

channels c and c′, respectively [50]. In particular, the mean time delay in the channel c given
by the diagonal element Qcc coincides in such an approximation with the dwell time given by
the norm of bc. One should distinguish generally between Qcc and the so-called proper time
delays qc (eigenvalues of Q). Taking their sum, one comes to a weighted mean time-delay
characteristic Qw = 1

M
tr Q = 1

M

∑
c Qcc = 1

M

∑
c qc, the so-called Wigner’s time delay

which is known, see e.g. [40, 49, 51], to be determined by the energy derivative of the total
scattering phase shift: Qw = − i

M
∂

∂E
log det S. Diverse aspects of delay times in quantum

chaotic scattering [40] as well as in a general quantum mechanical context [52, 53] can be
found in the cited literature and references therein.

As is well known, statistics of spectra of closed quantum systems with chaotic classical
counterparts are to a large extent universal and independent of their microscopic nature.
This remarkable universality provides one with a possibility of using the RMT [54] for an
adequate description of many physical properties of such systems [55]. According to the
general paradigm we replace the actual Hermitian part H of the effective Hamiltonian (2)
with a random Hermitian matrix H taken from one of the three canonical Wigner–Dyson’s
ensembles labelled by the symmetry index β according to the symmetry of the system under
consideration. The Gaussian orthogonal (GOE, β = 1 and H real symmetric) and unitary
(GUE, β = 2 and H Hermitian) ensembles stand for systems with preserved or fully broken
time-reversal symmetry (TRS), respectively. The remaining Gaussian symplectic ensemble
(GSE, β = 4 and H self-dual quaternion) is relevant for description of time-reversal systems
with strong spin–orbit scattering. The limit of large N → ∞ is supposed to be finally
taken. Then eigenvalues are distributed on the finite interval according to Wigner’s semicircle
law, which determines locally the mean level spacing �. The most appealing feature of
the RMT approach is that quantities related to spectral fluctuations when expressed in units
of � (‘unfolding’) do not depend on microscopic details (i.e. the particular form of the
distribution of H or the profile of �) and become uniform throughout the whole spectrum
[55]. For practical reasons we thus restrict ourselves to considering fluctuations at the centre
of the spectrum (E = 0) only. Similarly, the results turn out to be also independent of
particular statistical assumptions on coupling amplitudes V c

n as long as M � N [49, 56]. The
amplitudes may be chosen as fixed [2] or random [38] variables and enter final expressions
only in combinations known as transmission coefficients (also sometimes called sticking
probabilities)

Tc ≡ 1 − |Scc|2 = 4κc

(1 + κc)2
, κc = π‖V c‖2

2N�
, (5)

where Scc stands for the average (optical) S-matrix. The transmission coefficients are assumed
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to be input parameters of the theory, the cases Tc � 1 and Tc = 1 corresponding to an almost
closed or perfectly open channel ‘c’, respectively.

Absorption is usually seen as a dissipation process, which evolves exponentially in time.
Strictly speaking, different spectral components of the field may have different dissipation
rates. However, frequently this rather weak energy dependence can easily be neglected as
long as local fluctuations on much finer energy scale ∼� are considered. As a result, all
the resonances acquire one and the same absorption width � > 0 additionally to their escape
widths �n. The dimensionless phenomenological parameter γ ≡ 2π�/� characterizes then
the absorption strength, with γ � 1 or γ 	 1 corresponding to the weak or strong absorption
limit, respectively. Microscopically, it can be modelled by means of a huge number of weakly
open parasitic channels [6, 57] or by coupling to a very complicated background with almost
continuous spectrum [16], see also [58]. In microwave billiards such an approximation is
frequently very good to account for uniform Ohmic losses which happen everywhere in non-
perfectly conducting walls. However, in some experimentally relevant situations such as, e.g.,
complex reverberant structures [59] or even microwave cavities at room temperature [11, 46]
an approximation of uniform absorption may break down, and one should take into account
instead localized-in-space losses which will result in different broadenings of different modes.
The latter are easily incorporated in the model by treating them as if induced by additional
scattering channels, see e.g. [19]. An alternative scheme of treating localized-in-space surface
absorption is discussed in [23]. (Discussion of a formal theory of scattering for complex
absorbing potentials can be found in [60].)

Operationally, the uniform absorption can equivalently be taken into account by a
purely imaginary shift of the scattering energy E → E + i

2� ≡ Eγ , so that the S-matrix
Sγ (E) ≡ S(Eγ ) becomes subunitary. The reflection matrix Rγ = S†

γ Sγ provides then a
natural measure of the mismatch between incoming and outgoing fluxes. It can be obtained
from R� (3) by analytic continuation in � from a real to the purely imaginary value � = i�,
yielding [16]

Rγ (E) = R�=i�(E) = 1 − �Qγ (E), Qγ (E) ≡ V † 1

(Eγ − Heff)†
1

Eγ − Heff
V. (6)

This representation is valid at arbitrary value of �. In the limit of small � one can neglect the
difference between Qγ and Q, resulting in the approximate expression [15, 61] Rγ � 1 −�Q

following from (4). It is therefore tempting to keep for Qγ the meaning of the time-delay
matrix at finite absorption as well (see, however, discussion in [16]). By construction, Rγ is
a Hermitian matrix, its positive reflection eigenvalues rc = 1 − �qc � 1 are related to proper
time delays qc (at finite absorption).

Considering quantum scattering with no internal dissipation, � = 0, the S-matrix unitarity
ensures that the reflection coefficient Rc = |Scc|2 in any given channel is simply related to
the quantum mechanical probability to exit via any of the remaining channels, known as the
transmission probability: Rc = 1 −∑

b 
=c |Sbc|2. For an absorptive system the last equality
is violated, but still the quantity τc = 1 − Rc can be interpreted as the quantum mechanical
probability that a particle entering via a given channel never exits through the same channel.
Hence, it was suggested to call τc the probability of no return (PNR) [17]. In the particular
case of a single open channel fluctuations of the PNR τ arise solely due to absorption
(neglecting dissipation trivially results in τ ≡ 0). At weak absorption τ ≈ �q, so that
the PNR is just simply proportional to the time delay.

Last but not least, the matrix Z ≡ iK(Eγ ) has the meaning of the normalized cavity
impedance in such a setting, see [27, 28] for further details.
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3. Correlation functions

Any observable in chaotic resonance scattering exhibits strong fluctuations over a smooth
background as the scattering energy or other external parameters are varied. Usually these
variations occur on two essentially different energy scales. This fact is conventionally
taken into account by decomposing fluctuating quantities into a mean part and a fluctuating
part, the former being understood as the result of spectral or (assumed to be equivalent)
ensemble average 〈· · ·〉. In this section we consider statistics as determined by a two-
point correlation function of the fluctuating parts (frequently called a ‘connected’ correlation
function): 〈AB〉conn = 〈AB〉 − 〈A〉〈B〉. We restrict ourselves below to the cases of preserved
(β = 1) and broken (β = 2) TRS (the symplectic case β = 4 proceeds along the same lines).

3.1. Impedance

Let us start with considering the simplest case of the impedance correlations. The problem
can be fully reduced to that of spectral correlations determined by the two-point cluster
function Y2,β(ω) = δ(ω) − �2〈ρ(E1)ρ(E2)〉conn, where ω = (E2 − E1)/� and ρ(E)

being the level density. It is easy to satisfy oneself that for the mean impedance at
E = 0 holds 〈Zab〉 = κaδ

ab. To calculate the energy correlation function Cabcd
Z (ω) ≡

〈Zab∗(E1)Z
cd(E2)〉conn, it is instructive to write Zab(E) in the eigenbasis of the closed

system: Zab(E) = i
2

∑
n va∗

n vb
n

/(
E − En + i

2�
)
. A rotation that diagonalizes the (random)

Hamiltonian matrix H transforms the (fixed) coupling amplitudes V a
n to Gaussian-distributed

random coupling amplitudes va
n with zero mean and covariances

〈
va∗

n vb
m

〉 = (2κa�/π)δabδnm.
In such a representation the energy correlation function acquires the following form:

Cabcd
Z (ω) =

∑
n,m

1

4

〈
va

nv
b∗
n vc∗

m vd
m

〉 〈 1

E1 − En − i
2�

1

E2 − Em + i
2�

〉
conn

(7)

and the averaging over coupling amplitudes and that over the spectrum can be done
independently. The Gaussian statistics of v results in

1

4

(π

�

)2 〈
va

nv
b∗
n vc∗

m vd
m

〉 = κaκcδ
abδcd + κaκb(δ

acδbd + δ1βδadδbc)δnm, (8)

where δ1β term accounts for the presence of TRS, when all va
n are real and Z is symmetric.

It is useful to represent the spectral correlation function in a form of the Fourier integral∫∞
0 dt1

∫∞
0 dt2 e−�(t1+t2)/2 eiE(t2−t1) ei(E2−E1)(t1+t2)/2〈ei(Ent1−Emt2)〉conn. Due to the uniformity of

local fluctuations in the bulk of the spectrum, one can integrate additionally over the
position E of the mean energy:

∫
dE
N�

eiE(t2−t1) = 1
N

δ
(

t2−t1
tH

)
, where tH ≡ 2π/� is the

Heisenberg time. It is natural therefore to measure the time in units of tH . From the known
RMT spectral fluctuations one also has for n 
= m (1 − N)〈e2π i(En−Em)t/�〉conn = b2,β(t),
where b2,β(t) is the spectral form factor defined through the Fourier transform of Y2,β(ω) =∫∞
−∞ dt e2π iωtb2,β(t) [54, 55]:

b2,β=1(t) = [1 − 2t + t log(1 + 2t)]�(1 − t) +

[
t log

(
2t + 1

2t − 1

)
− 1

]
�(t − 1) (9a)

b2,β=2(t) = (1 − t)�(1 − t) (9b)

at t > 0 and b2,β(−t) = b2,β(t). Combining all these together, we arrive finally at

Cabcd
Z (ω) =

∫ ∞

0
dt e2π iωt Ĉabcd

Z (t) (10a)
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Ĉabcd
Z (t) = 4 e−γ t [κaκc[1 − b2,β(t)]δabδcd + κaκb(δ

acδbd + δ1βδadδbc)]. (10b)

Similar in spirit calculations were done in a context of reverberation in complex structures in
[59, 62] and in a context of chaotic photodissociation in [63, 64].

The form factor (10b) is simply related to that of K-matrix elements at zero absorption as
Ĉabcd

Z (t) = e−γ t Ĉabcd
K (t). Such a relationship between the corresponding form factors with

and without absorption is generally valid for any correlation function which may be reduced
to the two-point correlation function of resolvents (see [7] and the discussion below, e.g., for
the case of the S-matrix). This can be easily understood as a result of the analytic continuation
2πω → 2πω + iγ of the energy difference ω reflecting switching on the absorption (see the
previous section).

The obtained expressions describe a gradual loss of correlations in Z-matrix elements as
the energy difference grows; generally, CZ(ω → ∞) → 0. At ω = 0, (10a) provides us with
impedance variances Cabab

Z (0) = var(Zab) ≡ 〈|Zab|2〉−|〈Zab〉|2, which were recently studied
experimentally in [65]. In analogy with the so-called elastic enhancement factor considered
frequently in nuclear physics [66], one can define the following ratio of variances in reflection
(a = b) to that in transmission (a 
= b):

WZ,β ≡
√

var(Zaa)var(Zbb)

var(Zab)
= 2 + δ1β −

∫ ∞

0
ds e−sb2,β

(
s

γ

)
(11)

where the second equality follows easily from (10b) (note that the coupling constants κa,b are
mutually cancelled here). Making use of b2,β(∞) = 0 and b2,β(0) = 1, one can readily find
WZ,β in the limiting cases of weak or strong absorption as

WZ,β =
{

2 + δ1β at γ � 1
1 + δ1β at γ 	 1.

(12)

WZ,β decays monotonically as absorption grows. In the case of unitary symmetry, (9b)
and (11) yield explicitly WZ,2 = 1 + 1

γ
(1 − e−γ ) in agreement with [65]. It is hardly

possible to get a simple explicit expression at finite γ in the case of orthogonal symmetry.
However, a reasonable approximation can be found if one notices that the integration in
(11) is determined mainly by the region s � 1, so that one can approximate b2,1(s) ≈
(1 − 2s + 2s2)�(1 − s) through its Taylor expansion. Performing the integration, one arrives
at WZ,1 ≈ 3 − γ −2[(4 + γ 2)(1 − e−γ ) − 2γ (1 + e−γ )], which turns out to be a good
approximation to the exact answer at moderately strong absorption (deviations are seen
numerically only at γ ∼ 1).

3.2. Scattering matrix

The energy correlation function of the scattering matrix elements

Cabcd
S (ω) ≡ 〈

Sab∗
γ (E1)S

cd
γ (E2)

〉
conn =

∫ ∞

0
dt e2π iωt Ĉabcd

S (t) (13)

is a much more complicated object for an analytical consideration as compared to (7). The
reason becomes clear if one considers again the pole representation of the S-matrix which
follows from (2): Sab(E) = δab − i

∑
wa

nw̃
b
n

/
(E − En). Due to unitarity constraints imposed

on S at real E the residues and complex resonance energies develop nontrivial correlations
[38]. Although results on statistics of resonances in the complex plane [40, 67–69] as well as
the corresponding residues [69, 70] became recently available in some particular cases, this
knowledge is insufficient as yet for calculating S-matrix correlations in general. The separation
like (7) into a ‘coupling’ and ‘spectral’ average is no longer possible and can be done only
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by involving some approximations [71]. The powerful supersymmetry method [2, 72] turns
out to be an appropriate technique to perform the statistical average in this case. In their
seminal paper [2], Verbaarschot, Weidenmüller and Zirnbauer performed the exact calculation
of (13) at arbitrary transmission coefficients (and zero absorption) in the case of orthogonal
symmetry. This finding was later adopted [7] to include absorption. The corresponding exact
result for unitary symmetry has been recently presented by us in [34] (see also [73] concerning
the S-matrix variance in the GOE–GUE crossover at perfect coupling) and is discussed below.

The calculation proceeds along the same lines as in [2]. The final expression for both
the connected correlation function and its form factor (13) can be equally represented as
follows:

Cabcd
S = δabδcdTaTc

√
(1 − Ta)(1 − Tc)Jac + (δacδbd + δ1βδadδbc)TaTbPab. (14)

Here, the δ1β term accounts trivially for the symmetry property Sab = Sba in the presence
of TRS. Jac and Pab defined below are some functions (of the energy difference ω or the
time t), which depend also on TRS, coupling and absorption but already in a nontrivial way.
As a result, the elastic enhancement factor WS,β ≡

√
var(Saa)var(Sbb)/var(Sab) is generally

a complicated function of all these parameters, in contrast to (11). In the particular case of
perfect coupling, all Tc = 1, one has obviously from (14) that WS,β = 1+δ1β at any absorption
strength.

We consider first expression (14) in the energy domain at real ω (no absorption). The
functions Jac(ω) and Pab(ω) can be generally written as certain expectation values in the
field theory (nonlinear zero-dimensional supersymmetric σ -model) whose explicit
representations depend on the symmetry case considered; we refer the reader to [2, 74] for
general discussion. In the β = 1 case of orthogonal symmetry the well-known result of [2]
reads:

Jac(ω) =
〈(

µ1

1 + Taµ1
+

µ2

1 + Taµ2
+

µ0

1 − Taµ0

)
×
(

µ1

1 + Tcµ1
+

µ2

1 + Tcµ2
+

µ0

1 − Tcµ0

)
FM

〉
µ

(15a)

Pab(ω) =
〈(

µ1(1 + µ1)

(1 + Taµ1)(1 + Tbµ1)
+

µ2(1 + µ2)

(1 + Taµ2)(1 + Tbµ2)

+
µ0(1 − µ0)

(1 − Taµ0)(1 − Tbµ0)

)
FM

〉
µ

(15b)

with FM = ∏
c

[
(1−Tcµ0)

2

(1+Tcµ1)(1+Tcµ2)

]1/2
being the so-called channel factor, which accounts for

system openness, and 〈(· · ·)〉µ is to be understood explicitly as

1

8

∫ ∞

0
dµ1

∫ ∞

0
dµ2

∫ 1

0
dµ0

(1 − µ0)µ0|µ1 − µ2|eiπω(µ1+µ2+2µ0)

[(1 + µ1)µ1(1 + µ2)µ2]1/2(µ0 + µ1)2(µ0 + µ2)2
(· · ·). (16)

In the β = 2 case of unitary symmetry we have found [34] that

Jac(ω) =
〈(

µ1

1 + Taµ1
+

µ0

1 − Taµ0

)(
µ1

1 + Tcµ1
+

µ0

1 − Tcµ0

)
FM

〉
µ

(17a)

Pab(ω) =
〈(

µ1(1 + µ1)

(1 + Taµ1)(1 + Tbµ1)
+

µ0(1 − µ0)

(1 − Taµ0)(1 − Tbµ0)

)
FM

〉
µ

(17b)

with the channel factor FM = ∏
c

1−Tcµ0

1+Tcµ1
and the corresponding integration being∫ ∞

0
dµ1

∫ 1

0
dµ0(µ1 + µ0)

−2 ei2πω(µ1+µ0)(· · ·). (18)
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In the important particular case of the single open channel (elastic scattering), the general
expression for the β = 2 case simplifies further to

〈S∗(E1)S(E2)〉conn = T 2
∫ ∞

0
dµ1

∫ 1

0

dµ0

µ1 + µ0

1 + (2 − T )µ1

(1 + T µ1)3
ei2πω(µ1+µ0). (19)

Finally, putting above ω → ω + iγ /2π accounts for the finite absorption strength γ .
To consider (14) in the time domain, i.e. the form factor Ĉabcd

S (t), we notice that the
variable t = 1

2 (µ1 + µ2 + 2µ0) for β = 1 or t = µ1 + µ0 for β = 2 plays the role of the
dimensionless time (in units of tH ). The corresponding expressions for P̂ab(t) and Ĵ ac(t) can
be investigated using the methods developed in [41, 66, 71]. For orthogonal symmetry it was
done in [7], where the overall decaying factor e−γ t due to absorption was also confirmed by
comparison to the experimental result for the form factor measured in microwave cavities.
It is useful for the qualitative description to note that P̂ab(t) and 2Ĵ ac(t) are quite similar
to the ‘norm leakage’ decay function [75] and the form factor of Wigner’s time delays [49],
respectively (they would coincide exactly at γ = 0, if we put Ta,b,c = 0 appearing explicitly
in denominators above). Then one can follow analysis performed there, see also [41], to find
P̂ab(t) ≈ e−γ t and Ĵ ac(t) ≈ (2t/β) e−γ t as exact asymptotic at small times [71], while they
both become proportional to e−γ t t−Mβ/2−2 at large times.

Such a power law is characteristic for open systems [39, 41, 75]. Physically, it results
from width fluctuations, which diminish as the number M of open channels grows [40, 75].
In the limiting case M → ∞ and Tc → 0, all the resonances acquire just the same escape
width

∑
c Tc (in units of t−1

H ), which is often called Weisskopf’s width [76], so that the total
width is γT = ∑

c Tc + γ . Then there occur further simplifications, P̂ab(t) = e−γT t and
Ĵ ab(t) = [1 − b2,β(t)] e−γT t , which finally result in

Cabcd
S (ω) = (δacδbd + δ1βδadδbc)TaTb

γT − 2π iω
+ δabδcdTaTc

∫ ∞

0
dt[1 − b2,β(t)] e−(γT −2π iω)t . (20)

For the case of β = 1 this result (at zero absorption) was obtained earlier by Verbaarschot
[66]. In the limit considered, expression (20) is very similar to (10a) and (10b), so that the
enhancement factor WS,β is given by the same (11) where γ is to be substituted with γT . At
γT 	 1 (large resonance overlapping or strong absorption, or both) the dominating term in
(20) is the first one, which is known as the Hauser–Feshbash relation [77], see [78–80] for
discussion. Then WS,β = 2/β = WZ,β that can be also understood as the consequence of the
Gaussian statistics of S (as well as of Z) in the limit of strong absorption [80].

3.3. Reflection

In this subsection we consider fluctuations in the weighted-mean reflection coefficient defined
as r = 1

M
tr R. Its average value 〈r〉 was recently calculated in [16], where the exact result

was found to be

〈r〉 = 1 − γ

M

[
1 − γ

∫ ∞

0
dt e−γ tP (t)

]
(21)

relating 〈r〉 to the so-called norm-leakage function P(t) introduced in [75]. The actual value
of 〈r〉 changes with growing absorption between 1− γ

M
at γ � 1 and 1− 1

M

∑
c Tc at γ 	 M .

For the sake of simplicity we consider the case of M equivalent channels below, all Tc = T .
For large M 	 1 the widths cease to fluctuate, yielding P(t) = e−MT t , so that (21) results in
〈r〉 = (MT + γ (1 − T ))/(MT + γ ) [18].

The correlation function CR(ω) = 〈r(E1)r(E2〉conn = �2 〈Qw(E1)Qw(E2〉conn is simply
related by virtue of (6) to that of Wigner’s time delay Qw = 1

M
tr Qγ (at finite �).
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Amounting to a four-point correlation function of resolvents, its evaluation is generally
beyond the present day state of art in the supersymmetry method. However, by approximating
Qw ≈ 1

M

∑
n �n

/[
(E − En)

2 + 1
4 (�n + �)2

]
, cf (6), and making use of the rescaled Breit–

Wigner approximation (RBWA) of Gorin and Seligman [71], one can find an expression
which is supposed [7] to work reasonably well at finite absorption. The final result can be
naturally represented in the form of the Fourier-integral

CR(ω) = 2γ 2

M2

∫ ∞

0
dt cos(2πωt) e−γ tFR(t) (22)

where the form factor (we have set apart in (22) the trivial absorbing factor e−γ t ) is

FR(t) = c2,β(t)

(1 + 2T t/β)Mβ/2
− b2,β(t)c1,β

(
t
2

)2
(1 + T t/β)Mβ

(23)

with the function cn,β(t), n = 1, 2, defined as follows:

cn,β(t) =
n−1∏
l=0

(
1

2
Mβ + l

)∫ ∞

0
dx

xn−1 e−(βγ /2T )(1+2T t/β)x

(1 + x)Mβ/2+n
. (24)

It is instructive to consider the limiting cases of weak and strong absorption in more detail.
At γ � T � 1, the γ -dependence and thus t-dependence of cn,β(t) is very weak, so that
cn,β(t) ≈ 1 for t � 1/γ . As a result, the form factor reduces to

FR(t) = (1 + 2T t/β)−Mβ/2 − b2,β(t)(1 + T t/β)−Mβ (25)

which is, as expected, just the form factor of Wigner’s time-delay correlation function at zero
absorption calculated in the same scheme RBWA. In the opposite limiting case γ 	 T , the
x-integration in cn,β(t) is determined mainly by the region of small x � T/γ � 1, which
readily yields

FR(t) =
(

MT

γ

)2 [ 1 + 2/Mβ

(1 + 2T t/β)Mβ/2+2
− b2,β(t)

(1 + T t/β)Mβ+2

]
. (26)

Comparing the large time asymptotic of FR(t), one sees that a crossover from t−Mβ/2 to
t−Mβ/2−2 behaviour occurs at γ ∼ T , as we go from weak to strong absorption regime. This
behaviuour is indicative of an additional decay of correlations induced by strong absorption
on top of the pure exponential one. It is most pronounced for a single-channel cavity with
TRS, corresponding to changing from t−1/2 to t−5/2.

4. Distribution functions

4.1. Single-channel scattering

4.1.1. Reflection coefficient and the local Green function. It is quite clear that the joint
distribution of the real and imaginary parts of K

P(u, v) = 〈δ(u − Re K)δ(v + Im K)〉 (27)

determines fully the statistics of the impedance and the S-matrix. By definition (1),
K = κ(N�/π)Gii is related to the diagonal element Gii = 〈i|(Eγ − H)−1|i〉 of the Green
function of the closed system in the position representation, taken at the position i of channel
attachment. The RMT assumption for H implies however that the basis of representation may
be chosen arbitrary. One studies, therefore, statistics of the dimensionless local Green function
K ≡ u − iv, with v > 0 being the local density of states (LDoS). We consider first the case
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of perfect coupling κ = 1 (T = 1). In particular, this choice ensures the normalization of the
mean LDoS such that 〈v〉 = 1.

In this case, the following general form of the distribution function:

P(u, v) = 1

2πv2
P0(x), x = u2 + v2 + 1

2v
> 1 (28)

may be easily established [21]. It initially emerged in [81, 82] in the course of tedious
calculations for the β = 2 symmetry class, but neither origin nor generality of such a form was
appreciated. Actually, the validity of the form (28) follows directly from exploiting the two
following fundamental properties of the S-matrix statistics at perfect coupling: (i) the uniform
distribution of the scattering phase θ ∈ (0, 2π); and (ii) the statistical independence of θ

and the S-matrix modulus. In the cases of chaotic systems with pure symmetries, both these
properties can be verified making use of methods of [57]. In this paper we are proving (28)
directly by an alternative, more powerful method [22]. It holds much beyond the universal
RMT regime for a very broad class of disordered Hamiltonians, in particular for the case when
localization effects already play an important role. Moreover, this method will help us to
verify that (28) holds in the crossover regime between the pure ensembles. For the time being
the uniformity of the scattering phase distribution will be taken for granted.

Substituting K = u − iv into (1), we can immediately infer that the variable x is directly
related to the reflection coefficient, parametrizing it in the following way:

Sγ ≡ √
r eiθ , r = x − 1

x + 1
, cot θ = u2 + v2 − 1

2u
. (29)

The joint distribution P(u, v) of u and v and that P(x, θ) of x and θ are related by means
of the Jacobian

∣∣ ∂(u,v)

∂(x,θ)

∣∣ = v−2 as can be verified by a straightforward calculation. Finally,

P(x, θ) = 1
2π

P0(x) results from the uniform distribution of the phase and in this way P0(x)

acquires the physical meaning of the normalized distribution of the reflection parameter x.
Relationship (28) is one of our central results, which despite its apparent simplicity will

have many far-reaching consequences which are not easy to guess otherwise. Let us note
the invariance property of this distribution under the change iK → 1/iK , meaning that both
the impedance and its inverse (i.e. the admittance) must have one and the same probability
distribution. Another remarkable feature of (28) is that it relates the distribution of the local
Green function in the completely closed system to the distribution of the reflection coefficient
in the perfectly open one. This fact will be fully utilized later on for extracting statistical
properties of the Wigner time delay.

It is instructive to discuss first the exact limiting statistics

P0(x) =


αβ/2+1

2�(β/2 + 1)

(
x + 1

2

)β/2

e−α(x+1)/2 (α � 1)

α

2
e−α(x−1)/2 (α 	 1),

α ≡ 1

2
βγ, (30)

which can be found [21] in the weak or strong absorption limit. In the former case, one can
follow [15, 61] in using a perturbation theory to relate reflection to the time delay in the ideal
cavity without absorption (see (6) thereafter). The latter quantity has a known distribution
[40, 83] Pτ

(
τ = q

tH

) = [(
β

2

)β/2/
�
(

β

2

)]
τ−β/2−2 e−β/2τ , which yields the first line above.

In the opposite case of strong absorption, the real and imaginary parts of S-matrix become
statistically independent Gaussian-distributed variables [14, 80], resulting in the so-called
Rayleigh distribution P(r) � (γβ/2) e−rγβ/2 of reflection valid at r ≈ 1

2 (x − 1) � 1, and the
second line in (30) follows.
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As to arbitrary absorption, an exact result was obtained first for unitary symmetry (β = 2)

by Beenakker and Brouwer [15]. It is convenient to keep the scaled absorption parameter α,
representing their result in the following form:

P0(x) = Nβ

2
[A(α(x + 1)/2)β/2 + B] e−α(x+1)/2 (31)

with α-dependent constants A ≡ eα − 1 and B ≡ 1 + α − eα , and with N2 = 1 standing for
the normalization. For the case of symplectic symmetry (β = 4), the exact form was reported
very recently [21]. The explicit derivation is given in appendix A, the final result being

P
gse
0 (x) = P̃

gue
0 (x) +

[
1

2
γ 2(x + 1)2 − γ (γ + 1)(x + 1) + γ

]
e−γ x

∫ γ

0
dt

sinh t

t
, (32)

where P̃
gue
0 (x) is the distribution (31) for β = 2 taken, however, at α = 2γ . The case of

orthogonal symmetry, the most welcomed experimentally, turns out to be extremely tricky. It
was suggested in [21], see also [10], that expression (31) (with Nβ = α/(A�(β/2 + 1, α) +
B e−α) and �(ν, α) = ∫∞

α
dp pν−1 e−p) is an appropriate interpolation formula at β = 1. It

incorporates correctly both known limiting cases of weak or strong absorption and a reasonable
agreement with available numerical and experimental data was found there in a broad range
of the absorption strength. Below we provide an exact analytical treatment of this case by the
method suggested in [22].

4.1.2. P(u, v) and the spectral correlation function of Green function resolvents. We
establish now the general relation [22] between the joint distribution function (28) at arbitrary
finite absorption and the energy autocorrelation function

C�(z−, z+) =
〈

1

z− − i0 − K0
(
E − 1

2� − i0
) 1

z+ + i0 − K0
(
E + 1

2� + i0
)〉 (33)

of the resolvents of the local Green function K0 at zero absorption (� = 0, indicated explicitly
in this subsection with the subscript ‘0’). Distribution (28) can be obtained from (33) by
analytic continuation in � from a real to purely imaginary value � = i� as follows. K0(E) is
an analytic function of the energy in the upper or lower half-plane and, thus, can be analytically
continued to the complex values: K0

(
E ± i

2�
) ≡ u ∓ iv, v > 0. This allows us to continue

then analytically the correlation function (33) from a pair of its real arguments to the complex
conjugate one: z+ = (z−)∗ ≡ z′ + iz′′, z′′ > 0. As a result, function (33) acquires at � = i�
the following form:

C(z′, z′′) ≡ C�=i�(z−, z+) =
〈

1

(z′ − u)2 + (z′′ + v)2

〉
=
∫ ∞

−∞
du

∫ ∞

0
dv

P(u, v)

(z′ − u)2 + (z′′ + v)2
. (34)

The second line here is due to the definition (28). To solve this equation for P(u, v), we
perform first the Fourier transform (FT) with respect to z′ that leads to

Ĉ(k, z′′) ≡
∫ ∞

−∞
dz′ eikz′

C(z′, z′′) =
∫ ∞

0
dv P̂(k, v)

π e−|k|(z′′+v)

z′′ + v
, (35)

where P̂(k, v) is the corresponding FT of P(u, v). Being derived at z′′ > 0, equation (35)
can be analytically continued to the whole complex z′′ plane with a cut along negative Re z′′.
Calculating then the jump of Ĉ(k, z′′) on the discontinuity line z′′ = −v (v > 0), we finally
get the following expression:



Scattering, reflection and impedance of chaotic waves 10743

P̂(k, v) = �(v)

2π2i
[Ĉ(k,−v − i0) − Ĉ(k,−v + i0)] (36)

with the Heaviside step function �(v). The inverse FT of (36) yields P(u, v).
This completely general relationship is another our central result. It resembles (and

reduces to) the well-known relation between the spectral density of states and the imaginary
part of the corresponding resolvent operator, when the case of one real variable is considered.
In contrast, the case of the distribution of two real variables requires to deal with the two-point
correlation function. Physically, the latter is a generalized susceptibility describing a response
of the system under consideration. This fact suggests to consider our formula in a sense as
a ‘fluctuation dissipation’ relation: The lhs of (36) stands for the distribution (of K) in the
presence of dissipation/absorption whereas the correlation function (of resolvents of K) in the
rhs accounts for fluctuations in the system, i.e. for arbitrary order correlations in the absence
of absorption.

The main advantage of the derived relation is that the correlation function is a much easier
object to calculate analytically as compared to the distribution. Such a calculation for ideal
systems at zero absorption has actually already been performed in many interesting cases.
In the particular case of a chaotic cavity an exact result for the correlation function (33) has
been previously derived by us in [40, 84]. Moreover, similar formulae can be derived for
any model describing a one-particle quantum motion in a d-dimensional sample with a static
disordered potential, see outline of the derivation in appendix B. The only important physical
assumption is that the disorder is such that all the relevant statistical properties of the system
can be adequately described by the standard diffusive supersymmetric nonlinear σ -model (or
its lattice version). For a detailed discussion of the validity of this approximation (and its
limitations) the interested reader is referred to the review [29] and the book [74].

In the ‘zero-dimensional’ case (chaotic cavity) the analytic continuation of (33) to
complex � = i� can be represented generally as follows (see appendix B for details):

C(z′, z′′) = 1

z′2 + (z′′ + 1)2
+

1

4

(
∂2

∂z′2 +
∂2

∂z′′2

)
F(x̃), x̃ ≡ z′2 + z′′2 + 1

2z′′ (37)

where it is important that the function F(x̃) depends on z′ and z′′ only via the scaling variable
x̃ > 1. Its explicit form depends on the symmetry present (e.g. preserved or broken TRS), the
following common structure being however generic:

F(x̃) =
∫ 1

−1
dλ0

∫ ∞

1
dλ1

∫ ∞

1
dλ2

f ({λ}) e−γ (λ1λ2−λ0)/2(x̃ + λ0)[
(x̃ + λ1λ2)2 − (λ2

1 − 1
)(

λ2
2 − 1

)]1/2 . (38)

The real function f ({λ}) is the only symmetry dependent term here. In the crossover regime
of gradually broken TRS it can be represented explicitly as follows [84]:

f ({λ}) = {(
1 − λ2

0

)
(1 + e−2Y ) − (λ2

1 − λ2
2

)
(1 − e−2Y )

+ 4y2R
[(

1 − λ2
0

)
e−2Y + λ2

2(1 − e−2Y )
]}e−2y2(λ2

2−1)

R2
(39)

with R = λ2
0 + λ2

1 + λ2
2 − 2λ0λ1λ2 − 1 and Y ≡ y2

(
1 − λ2

0

)
, where y denotes a crossover

driving parameter. Physically, y2 ∼ δEy/� is determined by the energy shift δEy of energy
levels due to a TRS breaking perturbation (e.g., weak external magnetic field in the case of
quantum dots) [85, 86]. Such an effect is conventionally modelled within the framework
of RMT by means of the ‘Pandey–Mehta’ Hamiltonian [87], H = ĤS + i(y/

√
N)ĤA, with

ĤS (ĤA) being a random real symmetric (antisymmetric) matrix with independent Gaussian-
distributed entries. The limit y → 0 or y → ∞ corresponds to fully preserved or broken
TRS, respectively.
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Now we apply relation (36) to equation (37) and then perform the inverse FT to get
P(u, v). Relegating all technical details to appendix C, we emphasize here the most important
points. The nontrivial contribution to the distribution comes from the second (‘connected’)
part of the correlation function (37) whereas the first (‘disconnected’) one is easily found to
yield the singular contribution δ(u)δ(v − 1). A careful analysis shows that due to specific x̃-
dependence given by equation (38) the above-described procedure for the analytic continuation
of the connected part of Ĉ(k, z′′) is equivalent to continuing F(x̃) analytically and taking the
jump at

x̃ = −x ± i0, with x ≡ 1

2v
(u2 + v2 + 1) > 1. (40)

Thus, the nonzero imaginary part F(x) = ImF(−x + i0) of the analytic continuation of (38)
is determined at given x by the following integral:

F(x) =
∫ 1

−1
dλ0

∫ ∫
Bx

dλ1 dλ2
f ({λ}) e−γ (λ1λ2−λ0)/2(x − λ0)[(

λ2
1 − 1

)(
λ2

2 − 1
)− (λ1λ2 − x)2

]1/2 (41)

over the integration region Bx = {
(λ1, λ2)|1 � λ1,2 < ∞, (λ1λ2 − x)2 <

(
λ2

1 − 1
)(

λ2
2 − 1

)}
,

where the square root in (38) attains pure imaginary values. Taking now into account the
identity

(
∂2

∂u2 + ∂2

∂v2

)
F(x) = v−2 d

dx
(x2 − 1) d

dx
F (x), which is valid for x2 
= 1, we finally

arrive at

P(u, v) = 1

4π2v2

d

dx
(x2 − 1)

dF(x)

dx
≡ 1

2πv2
P0(x). (42)

This proves in general, cf (28), the statistical independence and uniform distribution of the
scattering phase at perfect coupling. At arbitrary values of the crossover parameter y the
obtained expression can be further treated only numerically. However, further analytical
progress is possible in the limiting cases of pure symmetries and is considered below. We
discuss explicitly the two most important cases of unitary and orthogonal symmetries. Clearly,
the general scheme can be extended to the symplectic case with no principal difficulties.

4.1.3. Unitary symmetry. This case corresponds to considering the limit y → ∞.
The nonzero contribution comes then from the second line in (39) where one can use
effectively 4y2 e−2y2(λ2

2−1) → δ(λ2 − 1) in the limit under discussion. This simplifies
expression (38) further to F(x̃) = ∫∞

1 dλ1
∫ 1
−1

dλ0
(λ1−λ0)2

x̃+λ0
x̃+λ1

e−γ (λ1−λ0)/2. Performing now

analytical continuation (40) and making use of Im 1
λ1−x+i0 = −πδ(λ1 − x), one gets readily

F(x) = π
∫ 1
−1 dλ0(x − λ0)

−1 e−γ (x−λ0)/2, which yields the distribution [17]

P
gue
0 (x) = 1

2

d

dx
(x2 − 1)

d

dx

∫ x+1

x−1

dt

t
e−γ t/2 (43)

leading to equation (31) with β = 2 obtained earlier [15] by a different method.

4.1.4. Orthogonal symmetry. This case amounts to investigating (39) and (41) at y = 0.
Fortunately, further simplifications are possible if one considers the integrated probability
distribution W(x) ≡ − 1

2π
(x2 − 1) d

dx
F (x) = ∫∞

x
dxP0(x), which is a positive monotonically

decaying function by definition. To this end, we note that it is useful to switch to the
parametrization of [2] to carry out the three-fold integration. The latter turns out to yield then
a sum of decoupled terms and, after some algebra (see appendix C), the result can be cast [22]
in the following final form:

W(x) = x + 1

4π
[f1(w)g2(w) + f2(w)g1(w) + h1(w)j2(w) + h2(w)j1(w)]w= x−1

2
(44)
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with auxiliary functions defined as follows:

f1(w) =
∫ ∞

w

dt

√
t |t − w| e−γ t/2

(1 + t)3/2
[1 − e−γ + t−1],

g1(w) =
∫ ∞

w

dt
1√

t |t − w|
e−γ t/2

(1 + t)3/2
,

h1(w) =
∫ ∞

w

dt

√|t − w| e−γ t/2

√
t (1 + t)

[γ + (1 − e−γ )(γ t − 2)],

j1(w) =
∫ ∞

w

dt
1√

t |t − w|
e−γ t/2

√
1 + t

;

their counterpart with the index 2 being given by the same expression save for the integration
region t ∈ [0, w] instead of [w,∞). The interpolation expression (31) with β = 1 compared to
the above exact result shows systematic deviations in the nonperturbative regime of moderate
absorption γ ∼ 1 (see [22]). Both formulae essentially coincide in the limiting cases of weak
or strong absorption, when one can already use the more simple and physically transparent
exact limiting statistics (30).

4.1.5. Impedance, reactance and the LDoS. Now we discuss statistics of the real and
imaginary parts of the local Green function one by one. Let us consider first the distribution
of the imaginary part v (LDoS). Having P0(x) at our disposal, it is immediate to find the
distribution function Pv(v) of v by integrating out u in (28):

Pv(v) =
√

2

πv3/2

∫ ∞

0
dqP0

[
q2 +

1

2

(
v +

1

v

)]
. (45)

This distribution is normalized to 1 and has the first moment unity at arbitrary absorption
(indeed 〈v〉 ≡ ∫∞

0 dv vP(v) = 1 is automatically satisfied due to invariance of the integrand
of (45) with respect to the change v → 1

v
). Explicit results for Pv(v) as well as for Pu(u) (see

(48)) can be readily obtained as P0(x) at arbitrary γ has been already derived above. We refer
the reader to the original publication [21], focusing now on the physically interesting limiting
cases of weak and strong absorption, where the behaviour of the distributions is qualitatively
different.

At γ � 1, the exact limiting statistics (30) for P0(x) can be used to perform the integration
in (45). One arrives at the following result:

Pv(v) ∝


α(1+β)/2v−(3+β)/2 e−α/4v, v � α

α1/2v−3/2, α � v � 1/α

α(1+β)/2v−(3−β)/2 e−αv/4, 1/α � v,

(46)

where constant factors of the order unity are omitted. This result can be physically
interpreted in the single-level approximation [88, 89], when the main contribution to the
LDoS v ≈ vn = |ψn|2 γ

2π

(
ε2
n + 1

4γ 2
)−1

comes from a level closest to the given value of the
energy (εn = 2π(E − En)/�). Fluctuations of the wavefunction ψn are mainly responsible
for the exponential suppression of the distribution on the tails, while spectral fluctuations
produce the intermediate bulk behaviour with a ‘super-universal’ 3

2 -power law, which actually
does not depend on the symmetry at all. As γ increases, a number of levels contributing to
v ∼ ∑

vn also grow ∼γ and their contributions get less correlated. The resulting limiting
form is almost a Gaussian:
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Figure 2. The distribution of the real u and imaginary v parts of the local Green function in the
time-reversal chaotic cavity as absorption γ grows. Dashed lines in (a) and (c) correspond to the
limiting statistics (49) and (47), respectively.

Pv(v) =
√

α

4πv3
exp

[
−α

4

(√
v − 1√

v

)2
]

, α 	 1. (47)

It shows a peak at v ∼ 1 of the width ∝1/
√

γ � 1, in agreement with [89].
Along the same lines, we may consider the distribution Pu(u) of the real part u

(‘reactance’). One finds from (28)

Pu(u) = 1

2π
√

u2 + 1

∫ ∞

0
dqP0

[√
u2 + 1

2

(
q +

1

q

)]
. (48)

The limiting forms of Pu(u) at weak and strong absorption follow readily as

Pu(u) �
{
π−1(1 + u2)−1, α � 1√

α/4π e−αu2/4, α 	 1.
(49)

The Lorenzian distribution in the first line of (49) is the consequence of the uniform
distribution of the scattering phase [90], as u ≈ cot θ

2 in the limit considered. As absorption
grows, one can see the crossover to a Gaussian distribution centred at zero, which is again a
result of the central limit theorem. This type of behaviour as well as a trend of Pv(v) to the
Gaussian distribution (47), see figure 2, was recently observed in experiments on the cavity
impedance [25, 26].

4.1.6. Delay time at vanishing absorption and eigenfunction intensity. The Wigner time delay
is one of the most important and frequently used characteristics of quantum scattering. It was
recently realized [35] that the fundamental relation (28) allows one to relate the distribution of
the time delay q in single-channel scattering (i.e. the Wigner time delay) from a general lossless
disordered system to the distribution of wavefunction intensities in the closed counterpart of
such a system. Namely, consider the local eigenfunction intensity y = V|ψn(r)|2 at a spatial
point r of the closed system, with V denoting the volume of the sample and the index n
numbering different eigenfunctions. Let Py(y) stand for the distribution of this intensity,
where the statistics is sampled both over various realizations of the disorder in the system
and over a certain small energy range around the point E in the spectrum, with � being the
mean level spacing in that energy range. Define the dimensionless time delay τw = q�/2π

corresponding to wave scattering at the chosen energy E from a single channel attached to
the point r of the sample. Denoting by Pw(τw) the corresponding distribution in the regime
of perfect coupling to the sample, Ossipov and Fyodorov managed to derive the following
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functional relation between the two distributions:

Pw(τw) = τ−3
w Py

(
τ−1
w

)
. (50)

Referring the interested reader for the details of derivation to [35], we would like only to
mention that at the starting point of the derivation the time delay is expressed via the reflection
coefficient r in presence of absorption: τw = limγ→0

1−r
γ

, see (6). Then one exploits in a
clever way the scaling form of the distribution (28) remembering both the interpretation of
the variable x in terms of r, see (29), and the interpretation of v as the LDoS, the latter step
providing a connection to eigenfunction statistics.

On one hand, in the idealized situation of zero absorption statistics of delay times of all
sorts were studied intensively in the framework of the RMT approach, various exact analytical
results being available, see [40, 49, 83, 84, 91–96] and references therein. Those were
successfully verified in numerical simulations of chaotic systems of quite a diverse nature,
see [97–99]. Since phase shifts and delay times are experimentally measurable quantities,
especially in a single-channel reflection experiment [5, 8, 10, 100–103], relation (50) opens a
new possibility for experimental study of eigenfunctions.

On the other hand, one can use the existent knowledge on eigenfunction statistics [29,
104] to provide via (50) explicit expressions for time-delay distributions. In this way one can
e.g. recover those for chaotic systems of all symmetry classes obtained previously by diverse
methods in various regimes of interest [40, 83, 84]. Of particular interest is the predicted
multifractal behaviour of the negative moments of time delays in the vicinity of the Anderson
localization transition [35]:〈

τ−q
w

〉 ∝ L−qDq+1 , (51)

where L stands for the system size at criticality, and Dq are anomalous (multifractal)
dimensions of the eigenfunctions. Such a behaviour was indeed discovered recently [105] in
numerical simulations of the disordered lattice Hamiltonians at criticality.

4.1.7. Anderson transition as phenomenon of spontaneous breakdown of S-matrix unitarity.
Actually, absorption in disordered systems plays not only purely technical, but also a
conceptually important role in revealing the mechanisms behind the Anderson localization
transition. Let us shortly discuss a possible qualitative behaviour of the PNR τ = 1 − r in a
scattering system formed by a single perfect channel attached to a d-dimensional disordered
sample at the vicinity of the point of the Anderson delocalization transition µc (the mobility
edge). Here we denote by µ an effective parameter which controls the transition in the infinite
sample, with states being localized (extended) for µ > µc (respectively, µ < µc).

For a sample of finite size L the PNR is a function of three parameters: absorption �, size
L and disorder strength µ. In the insulating phase µ > µc the system is characterized by a
localization length ξ which diverges when µ approaches the critical value. A natural scale for
the absorption is played by a parameter δ ∝ �ξd , i.e. the ratio of the imaginary shift in energy
to the mean level spacing for sample of a typical size L ∝ ξ (localization volume).

Consider the weak absorption limit δ → 0. It is clear that the wave incoming through
the incident channel effectively explores only a part of the sample of the order of localization
volume ξd , being exponentially small elsewhere. Under this condition it is clear that the two
limits � → 0 and L → ∞ should actually commute and can be taken in arbitrary order.
We know that in the limit � → 0 the PNR behaves as τ ≈ �q → 0, see (6). Moreover,
exploiting relation (50), and remembering that 〈|ψn(r)|2k〉 ∝ ξ−(k−1)d it is easy to see that
all negative integer PNR moments should behave in the infinite volume limit L → ∞ as
〈τ−k〉 ∼ �−kξ−dk . With a little more work one can suggest a qualitative picture for the
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PNR probability distribution in the localized phase. Namely, the distribution should have a
power-law tail P(τ ) ∝ δ/τ 2 extending through a parametrically large domain δ < τ < 1, and
should decay very fast towards zero for both τ � δ and τ → 1. When absorption vanishes
δ ∝ � → 0 such a distribution collapses to the Dirac δ-function P(τ ) ∝ δ(τ ), but in a very
nonuniform way. We may conclude that in the limit of vanishing absorption S-matrix unitarity
is indeed recovered, and in this sense we can associate the localized phase with the phase of
unbroken symmetry.

In contrast, in the delocalized phase the incoming wave explores the whole sample volume.
It is natural to think that whatever small (but fixed) is an absorption rate �, in the limit L → ∞
a finite portion of the incoming flux will be absorbed in the sample and will never come back to
the incident channel. In particular, we may expect lim�→0 limL→∞ τ(�,L,µ) = τ∞(µ) > 0
as long as µ < µc. From this point of view the Anderson transition acquires a natural
interpretation as the phenomenon of spontaneous breakdown of S-matrix unitarity. Informal
arguments in favour of such a behaviour are based on a picture of the transition as described
in terms of a functional order parameter developed in detail in [81, 82], see also earlier results
in [74] and [106]. Namely, the distribution function P(τ ) is expected to remain a nontrivial
finite-width distribution even when � → 0, provided the latter limit is taken after the infinite
volume limit L → ∞. Clearly, more work is needed to substantiate this claim, as well as to
clarify critical behaviour of τ∞(µ) as long as µ → µc.

Note finally that if the limit � → 0 is taken first, then for µ < µc PNR in large but finite
sample should again scale with the system size L as 〈τ−k〉 ∼ C(µ)�−kL−dk , cf (51). The
coefficient C(µ) is however expected to diverge when µ → µc. This divergence should be
related to the properties of eigenfunctions via equation (50).

4.1.8. Arbitrary coupling to the channel. The general case of arbitrary transmission
coefficient, T < 1, can be mapped [10, 95, 107, 108] to that of perfect coupling by making
use of the following relation:

ST =1 = S − √
1 − T

1 − √
1 − T S

(52)

between the corresponding scattering matrices. Equation (52) is known from the Poisson
kernel theory [107]. Due to an additional interference between incoming and directly back-
scattered waves, the scattering phase θ acquires a nonuniform distribution and statistical
correlations with x (or r). However, the joint probability density P(x, θ) is again determined
by the function P0 as follows [21]:

P(x, θ) = 1

2π
P0
(
xg −

√
(x2 − 1)(g2 − 1) cos θ

)
, g = 2

T
− 1 � 1. (53)

This relation can be obtained by a straightforward evaluation in the parametrization (52)
of the corresponding Jacobian. The integration over x immediately yields the scattering
phase distribution. In the particular case of vanishing absorption r → 1 and P0(x) →
x−2δ(1/x). This readily gives P(x, θ) → ρ(θ)P0(x), with the phase density 2πρ(θ) =(
g−

√
g2 − 1 cos θ

)−1
found earlier [95] (see [99] for the corresponding numerical study). As

another example we consider the reflection coefficient distribution in terms of P0(x) is given
at arbitrary T by [17]

Pr(r) = 1

π(1 − r)2

∫ 2π

0
dθP0

[
2
(
g −

√
g2 − 1

√
r cos θ

)
1 − r

− g

]
. (54)

Distributions of r and θ in microwave cavities were recently studied for different realizations
of γ and T in [10], the excellent agreement with the theory being found.



Scattering, reflection and impedance of chaotic waves 10749

4.2. Beyond single channel

4.2.1. Reflection coefficients and PNRs. The starting point of our analysis in this section is
the following convenient representation [17] for the diagonal elements Scc(E) of the scattering
matrix, cf (1):

Scc(E) = 1 − iKc(E)

1 + iKc(E)
, Kc(E) = 1

2
V c†(E − Hc

eff

)−1
V c, (55)

where Hc
eff = H − i

2

∑
b 
=c V bV b† is now the c-dependent non-Hermitian operator. In view

of Heff = H − i
2V V † ≡ Hc

eff − i
2V cV c† one can treat V cV c† as a rank 1 perturbation with

respect to Hc
eff . In this case the following general relationship (Dyson’s equation) is valid for

the corresponding resolvents [38]:

1

E − Heff
= 1

E − Hc
eff

− i

2

1

E − Hc
eff

V c 1

1 + iKc(E)
V c† 1

E − Hc
eff

(56)

which can be proved by expanding the lhs in a power series with respect to
(
E−Hc

eff

)−1
V cV c†

and summing then up the resulting geometric series in Kc. Substituting this equation in
Scc = 1 − iV c†(E − Heff)

−1V c one gets Scc = 1 − 2iKc − 2Kc(1 + iKc)
−1Kc which is

equivalent to (55). It is also worth noting that a representation like (55) is valid for an
arbitrary m × m submatrix standing on the main diagonal of S with obvious replacement V c

by the N × m matrix V (m) = (V c1 , . . . , V cm), and corresponding changes for Kc and Hc
eff . In

the particular case m = M , i.e. the full S-matrix, one recovers (1) from (2) and (56).
Relation (55) reduces the problem of evaluating the statistics of Scc, and hence the

reflection coefficient/PNR in a given channel c to calculate the joint probability density
P(uc, vc) of uc = Re Kc and vc = −Im Kc, with Kc standing for the particular diagonal
entry of the resolvent of the effective non-Hermitian Hamiltonian Hc

eff from (55). Moreover,
a uniform absorption within the sample can again be taken into account by a purely
imaginary shift of the scattering energy E → E + i

2� ≡ Eγ , all further steps being fully
in parallel to those of section 4.1.2. The most pleasant feature of this approach is that it
is very straightforward to include open channels in the derivation of P(uc, vc) within the
supersymmetry method. All important properties of this distribution, in particular, relations
(28), (41) and (42) retain its validity, with x being naturally replaced by xc = 1

2vc

(
u2

c + v2
c + 1

)
.

The corresponding function F(xc) then follows from (41) by multiplying there the integrand
with the ‘channel factor’ (which originates from the imaginary part of Hc

eff)

F c
M({λ}) =

∏
b 
=c

[
(gb + λ0)

2

(gb + λ1λ2) − (λ2
1 − 1

)(
λ2

2 − 1
)]1/2

, gb = 2

Tb

− 1, (57)

which accounts for arbitrary coupling to all other channels save for the given perfectly open
one c. Arbitrary coupling for the remaining channel c can be considered by means of (53),
providing us finally with the general distribution of the reflection amplitude and phase. In this
way one can also obtain explicit distributions for many interesting situations [17], including the
cases when the effects of Anderson localization start to play an important role. In particular,
in the case of broken TRS one can calculate the PNR distribution for a single channel attached
to an edge of a piece of quasi-one-dimensional disordered medium of a given length L, with
the opposite edge being either closed or in contact with a perfectly conducting multichannel
lead.

4.2.2. Reflection eigenvalues and thermal emission. The exact result for the distribution
function P(r) of reflection eigenvalues valid for any number of arbitrary open channels and
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arbitrary absorption is known only for the β = 2 case, being recently calculated by two of
us [16], generalizing earlier perturbative results [15] (known for all β). That uses the method
developed for studying the proper time-delay distribution [96] in the ideal lossless system.
The later distribution considered at finite absorption by means of (6) has a sharp cutoff at
q = �−1 due to a finite value of P(r) at r = 0. This fact makes the interpretation of q as delay
times at strong absorption questionable [16], since intuitively one expects a generic exponential
suppression at large values of delay times q 	 �−1. Indeed, for the time δt a wave-packet
oscillating in the cavity with a frequency �/2π on average experiences (�/2π)δt collisions
with the walls, yielding the probability Tφ(�/2π)δt to be absorbed into one of Mφ parasitic
channels (Tφ � 1 being the transmission coefficient). The total reflection is then estimated as
R � (1 − Tφ(�/2π)δt)Mφ , giving e−�δt in the absorption limit of the fixed absorption width
� = MφTφ�/2π as Mφ → ∞ and Tφ → 0. It is natural, therefore, to define alternatively the
positive definite matrix QR of reflection time delays as follows [16]:

QR ≡ −�−1 ln Rγ = −�−1 ln(1 − �Qγ ). (58)

One finds easily the connection PR(qr) = e−�qrP
[

1
�
(1 − e−�qr )

]
between the corresponding

distributions PR(qr) and P(q) of proper delay times (eigenvalues of QR and Qγ , respectively).
Both QR and Qγ reduce to the same Wigner–Smith matrix (4) in the limit of vanishing
absorption. The difference between them becomes noticeable at finite �. Still both
distributions coincide up to the time � �−1. They start to differ at larger times, when
P(q) has the cutoff whereas PR(q 	 �−1) ∝ e−�q is exponentially suppressed.

The exact result for the β = 1 case at arbitrary M is still outstanding. In the limit of
the large number of equivalent channels, M → ∞, an exact result can be found at arbitrary
absorption and coupling [18], and the perfect coupling case T = 1 has been known for
some time [109, 110]. In contrast to the few-channel case, when any value 0 � r � 1
is permitted, the distribution density in the present case is non-vanishing only in a range
0 � rmin � r � rmax < 1, and is the same for all β. Referring the reader to [18] for explicit
results, we mention their application for thermal emission from random media. Registration
of n photons in the frequency window δ� during the large time t 	 1/δ� yields the negative-
bimodal distribution of photocounts with ν = Mtδ�/2π degrees of freedom; see [111]. In
his seminal paper Beenakker [109] has shown that the quantum optical problem of the photon
statistics can be reduced to a computation of the S-matrix of the classical wave equation.
In particular, chaotic radiation may be characterized by the effective number νeff degrees of
freedom as follows [109]: νeff/ν = (1 − 〈r〉)2/〈(1 − r)2〉 � 1, with νeff = ν for blackbody
radiation. This ratio is given by νeff/ν = (γs + T )2

/[
γ 2

s + 2(γs + T )
]

at arbitrary transmission
T and absorption γs ≡ 2π�/�M , implying thus that saturation to the blackbody limit slows
down, νeff

ν
≈ 1 − 2

γ s
(1 − T ) at γs 	 1, for transmission T < 1 [18]. Finally, due to a duality

relation [109, 112] of a linear amplifying system to a dual absorbing one (related to it by
inverting the sign of �) there exists a further link of the analysis presented here to the rapidly
developing field of random lasers [109, 110, 112–114].

4.2.3. Off-diagonal entries of the Green function. As we have seen, the statistics of real and
imaginary parts of diagonal elements of the Green function can be very efficiently studied in
the framework of the supersymmetric approach and may have various physical interpretations.
The off-diagonal entries Gij (Eγ ) = 〈i|(Eγ − Heff)

−1|j 〉 are of considerable importance as
well. It can be easily understood that W = |Gij |2 is essentially the wave power transmitted
from a source at site i inside a random medium to a receiver at site j . Statistics of such an
object is much more difficult to study in general. Presently the most studied case [19] is
β = 2 symmetry class under an additional assumption that both receiver and source are very
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weakly coupled to the medium as to ensure those couplings do not contribute essentially to
the resonance broadening. This means that the broadening is induced purely due to losses
elsewhere in the medium. Technically the latter requirement amounts to vanishing coupling
amplitudes V c

i and V c
j for all damping channels c = 1, . . . ,M . Assuming further the RMT

statistics for ReHeff , it is easy to see that the damping matrix ImHeff can be chosen diagonal
and simply such that both entries (V V †)ii and (V V †)jj are vanishing. For such a model the

distribution of the scaled transmitted power w = (
�
π

)2
W can be found explicitly [19] as

P(w) =
(

d

dw
+ w

d2

dw2

)[
e−γ

√
1+w

2
√

1 + w

∫ 1

−1
dλ

√
1 + w + λ√
1 + w − λ

eγ λ

M∏
c=1

gc + λ

gc +
√

1 + w

]
. (59)

In fact, the remaining integration can be performed for two interesting cases: (i) all equivalent
dissipation channels gc = g in the absence of uniform losses γ = 0 and (ii) no internal
channels of dissipation gc → ∞ in the presence of uniform absorption γ > 0. Here we
present the formula only for the latter case [19]:

P(w) = γ 4 e−γw sinh γ

4γ 5
w

[
γ 2

w(w + 2) − (w − 2 − 2
(
γ 2

w

/
γ
)

coth γ
)
(1 + γw)

]
(60)

with the shorthand γw ≡ γ
√

1 + w. The distribution of the transmitted power for the case
of absorptive media with preserved time-reversal invariance is not yet known. First two
moments of that quantity were calculated recently in [20].

Let us finally mention that a closely related question of statistics of intensity of waves
emitted from a permanently radiating source embedded in a random medium was the subject
of many studies in recent years. Some useful references can be found in section 7 of [29], see
also the relevant review [114] on random lasing.

5. Conclusions and open problems

For wave scattering in open chaotic and/or disordered systems with uniform losses, we have
discussed various statistics on the level of both correlation and distribution functions. The
overall exponential decay due to uniform absorption is the generic feature of any correlation
function reduced to a two-point spectral (resolvent) correlation function, which follows simply
from analytic properties of the latter in the complex energy plane. For fully chaotic systems
with or without TRS, we have calculated exactly energy correlation functions of complex
impedance and S-matrix elements at arbitrary absorption and coupling. The corresponding
enhancement factors have been also discussed in detail. The result for S-matrix correlations
in the case of broken TRS completes the well-known one [2] of preserved TRS.

To study distribution functions, we have described the novel approach to the problem
by deriving a kind of a fluctuation dissipation relation (36) of quite a general nature, which
relates distributions at finite absorption to arbitrary order correlations at zero absorption via
a nontrivial analytic continuation procedure. Correlations can be efficiently studied in the
framework of the supersymmetric nonlinear σ -model. In the zero-dimensional case, a number
of explicit results is provided for quantities characterizing open chaotic systems both from
‘inside’ (LDoS, the complex impedance and the (local) Green function) and from ‘outside’
(PNRs, reflection coefficients and time delays). This σ -model mapping provides an attractive
possibility to include into consideration open disordered absorptive systems beyond the usual
RMT treatment.

Finally, let us briefly discuss an (incomplete) list of problems deserving, from our personal
point of view, further investigations both for scattering systems with and without absorption.
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Within the domain of RMT applicability, the most outstanding problems are of course those
requiring evaluation of four-point correlation functions of the resolvents, e.g., partial scattering
cross-sections. These are still not known even for the simplest case of broken TRS. Another
challenge is to find a probability distribution for the multichannel S-matrix at finite absorption,
thus nontrivially generalizing the Poisson kernel [90]. More work is required to understand an
interplay between the statistics of complex resonances and the corresponding bi-orthogonal
eigenfunctions [38, 69], the question being of particular relevance for lasing from random
and/or chaotic media [115, 116]. Spatial characteristics of internal parts bc = (E−Heff)

−1V c

of the scattering wavefunction are very interesting by their own and are closely related to
fluctuations in transmitted power discussed above in section 4.2.3.

Apart from that, in the last decade it was realized [117] that it may be required to consider
other symmetry classes (beyond the three of Dyson) which are relevant, e.g., for systems
involving superconducting elements. The corresponding scattering theory is reviewed in
[118]. To reconsider many problems discussed in the present paper taking those (and other
related) symmetries into account should be both interesting and informative (see [24] as a
recent example).

Last but not least, understanding scattering in disordered systems beyond the universal
RMT regime, taking into account, in particular, the effects of Anderson localization, is a rather
promising area calling for more systematic research.
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Appendix A. Statistics of the local Green function in the GSE

We start with expressing the dimensionless LDoS (the imaginary part of the local Green
function G

(
E + i

2�; r; r
)

in units of �) in terms of the eigenfunctions and eigenvalues of the
Hamiltonian H with underlying simplectic symmetry as

v(r) = −�

π
Im G

(
E +

i

2
�; r, r

)
= �

π

N∑
n=1

[|ψn(r)|2 + |φn(r)|2]
�

(E − En)2 + 1
4�2

. (A.1)

Here ψn(r) and φn(r) stand for the local amplitudes of the two eigenfunctions corresponding
to the (double-degenerate) eigenvalue En. It is convenient to consider scaled eigenvalues
εn = πEn/�, defining absorption η = π�/� ≡ 1

2γ . Replacing H with 2N × 2N random
GSE matrix, we follow the idea first suggested in [119] and in the first step exploit the
well-known fact that in the limit N 	 1 eigenvector components ψn(r) and φn(r) for
different values of n and r can be treated as independent, identically distributed complex
Gaussian variables. The corresponding joint probability density can be written symbolically
as Pn(ψ;φ)D(ψ;φ) = e−N(ψ†ψ+φ†φ)D(ψ;φ) where we introduced a shorthand notation
ψ †ψ = ∑N

n=1|ψn(r)|2 (and similarly for φ†φ), with the measure D(ψ;φ) being understood
as the (normalized) product of differentials of independent variables.

The Laplace transform F(s) = ∫∞
0 e−ρsPρ(ρ) dρ of the probability distribution function

Pρ for the normalized variable ρ = Nπv(r) can be then written as

F(s) =
〈∫

Pn(ψ;φ)D((ψ;φ))

N∏
n=1

exp − sNη(|ψn(r)|2 + |φn(r)|2)
(ε − εn)2 + η2

〉
{εn}

(A.2)
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where the angular brackets stand for the averaging over the joint probability density of all
eigenvalues εn and the limit N → ∞ is to finally taken. After performing the Gaussian
integrals, we therefore arrive to the following representation:

F(s) = lim
N→∞

〈
N∏

n=1

[(ε − εn)
2 + η2]2

[(ε − εn)2 + η2 + 2ηs]2

〉
{εn}

. (A.3)

Introducing the product πN(λ) = ∏N
n=1(λ − εn) we see that the characteristic polynomial of

the GSE matrix Ĥ is simply π2
N(λ). Formula (A.3) can be conveniently rewritten in terms of

this polynomial as

F(s) = lim
N→∞

〈
π

β/2
N (ε + iη)π

β/2
N (ε − iη)

π
β/2
N (ε + iµ)π

β/2
N (ε − iµ)

〉
{εn}

, µ =
√

η2 + 2ηs (A.4)

with β = 4 for GSE. In fact, in such a form the formula retains its validity for GUE β = 2
and GOE β = 1 cases as well.

The problem of evaluating ensemble averages of products and ratios of characteristic
polynomials of random matrices attracted a lot of research interest recently, both in physical and
mathematical community. For β = 2, the general problem was solved in [120, 121], and the
most complete set of formulae available presently for β = 1, 4 can be found in the recent paper
by Borodin and Strahov [122]. When addressing the most interesting case β = 1 they were,
unfortunately, able to consider only integer powers of characteristic polynomials, whereas
(A.4) obviously requires knowledge of half-integer powers. In this sense the corresponding
random matrix problem for β = 1 case is still outstanding. Borodin and Strahov derived the
following explicit expression for the β = 4 average featuring in (A.4):

lim
N→∞

〈
π2

N(α1)π
2
N(α2)

π2
N(β1)π

2
N(β2)

〉
GSE

=
∏2

i,j=1(αi − βj )

(α1 − α2)(β1 − β2)
Pf Ĉ (A.5)

assuming that Im β1 > 0, Im β2 < 0. Here, the matrix Ĉ has the following structure:

Ĉ =
(

Â B̂

−B̂T D̂

)
,

with

Â =
(

0 a

−a 0

)
, D̂ =

(
0 d

−d 0

)
, B̂ =

(
b11 b12

b21 b22

)
,

and Pf stands for the corresponding Pfaffian, Pf Ĉ =
√

det Ĉ. The entries of the matrix Ĉ are
given explicitly by

a = 1

π

∫ 1

0

dt

t
sin (α1 − α2)t, d = 2π i

∂

∂β1

(
ei(β1−β2)

β1 − β2

)
(A.6)

b11 = −ei(β1−α1)

β1 − α1
, b12 = ei(α1−β2)

α1 − β2
, b21 = −ei(β1−α2)

β1 − α2
, b22 = ei(α2−β2)

α2 − β2
. (A.7)

Restricting our consideration in (A.4) for simplicity to ε = E = 0 we have therefore
α1 = iη, α2 = −iη, β1 = iµ, β2 = −iµ. Substituting this to (A.6)–(A.7) and then to (A.5),
we find after straightforward computations the Laplace transform of the LDoS probability
density:

FGSE(s) = FGUE(s) + δF (s), (A.8)
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FGUE(s) = 1

4ηµ
(e−2(η−µ)(η + µ)2 − e−2(η+µ)(η − µ)2) (A.9)

δF (s) = 1

4ηµ2
(η2 − µ2)2 e−2η

(
1 +

1

2µ

)∫ 1

0

dt

t
sinh (2ηt). (A.10)

We note that (i) the only s-dependence in the above expression comes from µ =
√

η2 + 2ηs

and (ii) formula (A.9) concides with the Laplace transform of the LDoS distributuion for
β = 2 case, see e.g. [88, 119].

The remaining job is to find the part δF (ρ) of the LDoS probability density corresponding
to inversion of the Laplace transform in (A.10), which gives

δF (ρ) = d2

dρ2
[ρ1/2 e−η(ρ/2+2/ρ)]

1

4

√
2

πη

∫ 1

0

dt

t
sinh (2ηt). (A.11)

Knowledge of this function allows immediate restoration of the corresponding probability
density (32) for the main scaling variable x due to relations discussed in the main body of the
present paper (recall that η = γ /2).

Appendix B. Disordered systems of arbitrary dimension: nonlinear σ-model
derivation of expressions (37)

Let H be a (self-adjoint) Hamiltonian describing a one-particle quantum motion in a
d-dimensional static disordered potential. Among microscopic model Hamiltonians ensuring
validity of the nonlinear sigma-model description of such a system the simplest choice seems
to be Wegner’s N-orbital model [123, 124], or its variant due to Pruisken and Schäfer [125].
Physically the models are equivalent to the so-called granulated metal model [74]. One
can visualize it by considering a lattice of Ld sites (d standing for the spatial dimension of
the sample), each site being occupied with a metallic ‘granula’. The motion of a quantum
particle inside each granula is assumed to be fully ‘ergodic’, and as such the Hamiltonian
of the individual granula should be adequately modelled by a random N × N matrix Ĥ of
appropriate symmetry, provided that we consider the limit N → ∞. The quantum particle is
also allowed to tunnel between the neighbouring granulae, the process ensuring a possibility
of nontrivial diffusive motion along the lattice. Thus, the Hamiltonian H of the system as a
whole has a form of large matrix of the size N × Ld , consisting of coupled matrix blocks
Ĥk, k = 1, 2, . . . , Ld , of the size N ×N . For example, for the simplest quasi-one-dimensional
sample d = 1 such a matrix will be ‘block-three-diagonal’.

Being interested in scattering, we should provide a way to incorporate description of
external leads (or waveguides) attached to the sample. In the framework of the present model
attaching an Mk-channel lead to the block at site k is done by replacing the corresponding
‘intragranula’ matrix block Ĥk , with its non-self-adjoint counterpart Ĥk − i

2 �̂k , where N × N

matrix �̂k = 2 diag
(
κ

(k)
1 , . . . , κ

(k)
Mk

, 0, . . . , 0
)

� 0, and Mk staying finite when N → ∞.
Assuming the absorption width � to be uniform and identical in all the granulae, we are
interested in deriving the joint probability density P(u, v) of real u and imaginary v parts of
the local Green function in a state |j (l)〉 belonging to granule at the lattice site l:

G(j(l), j (l), Eγ ) = 〈j (l)|
(
Eγ − H +

i

2
�̂
)−1

|j (l)〉. (B.1)

Following the general strategy (see section 4.1.2) we recover P(u, v) from the correlation
function C(z′, z′′), see (34). The calculation of the corresponding correlation function is a
straightforward extension of the ‘zero-dimensional’ procedure employed in [40] for β = 2
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and then in [84] for β = 1 (as well as for the whole crossover) to the present d-dimensional
situation and will not be repeated here. The emerging supersymmetric nonlinear σ -model
on the lattice is described in terms of the supermatrices Qk, k = 1, . . . , Ld , parametrized as
Qk = −iT̂k�T̂ −1

k and interacting according to the ‘action’ (see e.g. [81])

S{Q} = − tβ

4

Ld∑
〈k,j〉

Str QkQj +
β

4

�

�

Ld∑
k

Str Qk�, (B.2)

where the first sum goes over pairs 〈k, j 〉 of nearest neighbours on the underlying lattice, �

stands for the mean level spacing and t stands for the effective inter-granule coupling constant,
which is the main control parameter of the emerging theory. We start with outlining the
procedure for β = 2 symmetry when Q-matrices involved in the calculation have the smallest
size 4 × 4. Assuming for simplicity that the granule l does not have a channel attached to it
directly, the correlation function C(z′, z′′), see (33) and (34), of resolvents of the (scaled with
N�
π

) Green functions (B.1) is expressed in terms of the Q-integrals as follows

Cβ=2(z
′, z′′) =

Ld∏
k=1

∫
dµ(Qk)F (k)

Mk
(Qk) e−S{Q} ∂2

∂J1∂J2
Sdet−1(U−1

J + Ql

)∣∣
J1=J2=0 (B.3)

where the supermatrix U depends on the variables z′, z′′ and sources J1, J2 via

U = 1
2 (z′ − iz′′)(1 + �) + 1

2 (z′ + iz′′)(1 − �) + diag(0, J1, 0, J2). (B.4)

The ‘channel factor’ F (k)
Mk

(Qk) ≡ ∏Mk

c=1 Sdet−1
(
1 + iκ(k)

c Qk�
)

originates from coupling to
continuum, where κ(k) = 0 if no external channels is attached to a given granule. The factors
FM appearing explicitly in section 3.2 as well as in (57) are just the zero-dimensional analogue
of F (k)

Mk
. Following [81, 82], we find it convenient to introduce the function

Y (l)(Ql) =
Ld∏
k 
=l

∫
dµ(Qk)F (k)

Mk
(Qk) e−S{Q}. (B.5)

Employing the standard Efetov-type parametrization of the matrices Q, one finds that actually
Y (l)(Q) must be a function of only two commuting variables: 1 � λ1 � ∞ and −1 � λ0 � 1.
Then integrating out all the remaining degrees of freedom in quite a standard way (see [40]
for more detail), we arrive at the representation (37) where

Fβ=2(z
′, z′′) =

∫ ∞

1
dλ1

∫ 1

−1

dλ0

(λ1 − λ0)2

x̃ + λ0

x̃ + λ1
Y (l)(λ1, λ0) (B.6)

the main scaling variable of our theory x̃ ≡ 1
2z′′ (z

′2 + z′′2 + 1) being introduced. This
immediately verifies the structure of the important formula (37) for a general d-dimensional
β = 2 system with attached scattering channels. Of course, ability to work out explicit
expressions for the probability density P(u, v) crucially depends on the availability of the
function Y (l)(λ1, λ). This function has a very simple form in ‘zero dimension’, physically
equivalent to a system consisting of a single granula:

Y (l)(λ1, λ0) = e−γ (λ1−λ0)/2
M∏

c=1

gc + λ0

gc + λ1
(B.7)

where we have assumed that the total number of external channels attached to the system
is M. Each channel is characterized by its own effective coupling constant gc =
1
2

(
κc + κ−1

c

)
� 1, the transmission coefficient being Tc = 2

gc+1 . Weak-localization corrections
to zero-dimensional results can be in principle found systematically following the procedures
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of [104], and nonperturbative results are mainly available in quasi-1D systems, see e.g. [126],
in the limit of weak absorption, γ � 1.

Treating systems of β = 1 symmetry class follows exactly the same steps as outlined
before, although in this case the supermatrices Q are of the size 8 × 8 with the corresponding
doubling the dimension of (B.4). Following [84, 86], we consider the whole crossover between
β = 1 and β = 2 symmetry classes. Due to the TRS breaking perturbation controlled by the
parameter y (Ĥk is no longer symmetric but still Hermitian), the action (B.2) (with β = 1)
acquires additionally the symmetry breaking term Sy{Q} = 1

4y2∑
k Str(τ3Qk)

2, with τ3 being
the Pauli matrix. As usual, explicit integrations are much more cumbersome and require
more work, some very useful and helpful relations can be found in [86]. Exploiting the
parametrization suggested there, the function Y (l)(Q) turns out again to be dependent on three
variables 1 � λ1,2 � ∞ and −1 � λ0 � 1, and the analogue of (B.6) reads

Fβ=1(z
′, z′′) =

∫ ∞

1
dλ1

∫ ∞

1
dλ2

∫ 1

−1

dλ0

R2

x̃ + λ0√
(x̃ + µ̃1)(x̃ + µ̃2)

Y (l)(λ1, λ2, λ0), (B.8)

where R = λ2
0 + λ2

1 + λ2
2 − 2λ0λ1λ2 − 1 and µ̃1,2 = λ1λ2 ±

√(
λ2

1 − 1
)(

λ2
2 − 1

)
, and in zero

dimension:

Y (l)(λ1, λ2, λ0) = f ({λ}) e−γ (λ1λ2−λ0)/2
M∏

c=1

gc + λ0√
(gc + µ̃1)(gc + µ̃2)

. (B.9)

Here, f ({λ}) coming solely due to the e−Sy {Q} term is explicitly given by (39). Integration
variables µ̃1,2 make a connection between the ‘radial’ parametrization of Q of [72] and the
‘angular’ parametrization of [2]. This will be utilized in the next appendix to get explicit
result for the zero-dimensional case for β = 1.

Appendix C. Analytic continuation (40) and GOE result (44)

We prove here equivalence of the analytic continuation of the ‘connected’ part of C(z′, z′′) in
z′′ → −v ± i0 (36) to that of F(x̃) in x̃ → −x ± i0 (40). Let us consider in detail first the
simplest case of β = 2 symmetry class in zero dimension. Then

C(z′, z′′) = 1

z′2 + (z′′ + 1)2
− 1

4

(
∂2

∂z′2 +
∂2

∂z′′2

)
×
∫ ∞

1
dλ1

∫ 1

−1

dλ0

λ1 − λ0

2z′′ e−γ (λ1−λ0)/2

z′2 + z′′2 + 2z′′λ1 + 1
(C.1)

where we have kept in the integrand only the term remaining nonzero under the differentiation.
The FT Ĉ(k, z′′) with respect to the first argument reads as follows:

Ĉ(k, z′′) = π e−|k|(z′′+1)

z′′ + 1
− 1

4

(
−k2 +

∂2

∂z′′2

)
×
∫ ∞

1
dλ1

∫ 1

−1

dλ0

λ1 − λ0

π e−|k|
√

z′′2+2z′′λ1+1√
z′′2 + 2z′′λ1 + 1

2z′′ e−γ (λ1−λ0)/2. (C.2)

Now we continue this result analytically in z′′ and calculate the jump (36) on the negative real
axis z′′ → −v ± i0, with v > 0. One gets readily

P̂(k, v) = δ(v − 1) +
1

2π

(
−k2 +

∂2

∂v2

)
×
∫ ∞

1+v2
2v

dλ1

∫ 1

−1

dλ0

λ1 − λ0

cos
(
k
√

2vλ1 − 1 − v2
)√

2vλ1 − 1 − v2
v e−γ (λ1−λ0)/2. (C.3)
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Performing now the inverse FT one arrives at

P(u, v) = δ(u)δ(v − 1) +
1

4π

(
∂2

∂u2
+

∂2

∂v2

)
×
∫ ∞

1+v2
2v

dλ1

∫ 1

−1

dλ0

λ1 − λ0
e−γ (λ1−λ0)/2δ(u2 + v2 + 1 − 2vλ1)2v. (C.4)

Making now use of δ(u2 + v2 + 1 − 2vλ1)2v = ∂
∂λ1

�(2λ1v − u2 − v2 − 1) = δ(λ1 − x),

with x = 1
2v

(u2 + v2 + 1) from (28), one can immediately integrate (C.4) over λ1, yielding∫ x+1
x−1 dt t−1 e−γ t/2 for the second line, which is in exact agreement with expression (43)

following from the analytic continuation (40).
The proof for the β = 1 case proceeds along the same lines, explicit expressions being

however more lengthy. We omit it, considering instead the less trivial derivation of expression
(44). It is important to stress that for β = 1 the nonzero F(x) (41) at given x > 1 is determined
by the integration region Bx = {(µ̃1, µ̃2)|x � µ̃1 < ∞, 0 � µ̃2 � x}, rather than by a single
point λ1 = x as in the β = 2 case. It is convenient, therefore, to choose µ̃1,2 from (B.8) as
new integration variables. Actually, they are related to those from [2] (which are already used
in (16)) as follows:

µ1,2 = 1
2 (µ̃1,2 − 1) ≡ 1

2

[
λ1λ2 ±

√(
λ2

1 − 1
)(

λ2
2 − 1

)]
, µ0 = 1

2 (1 − λ0). (C.5)

with the pre-exponential factor in (16) being the corresponding integration measure.
Expression (41) at y = 0 acquires then the following form (with w ≡ x−1

2 ):

F(x) =
∫ 1

0
dµ0

∫ ∞

w

dµ1

∫ w

0

dµ2(1 − µ0)µ0(µ1 − µ2)√
µ1(1 + µ1)µ2(1 + µ2)(µ0 + µ1)2(µ0 + µ2)2

× e−γ (µ1+µ2+2µ0)/2 w + µ0√
(µ1 − w)(w − µ2)

=
∫ 1/w

0
dν0

∫ ∞

1
dν1

∫ 1

0

dν2(1 + ν0)ν0(ν1 − ν2)√
ν1(ν1 − 1)ν2(ν2 − 1)(ν0 + ν1)2(ν0 + ν2)2

× e−γw(ν1+ν2+2ν0)/2 1 − wν0√
(1 + wν1)(1 + wν2)

(C.6)

where the second equality comes after the scaling µ0,1,2 = wν0,1,2. It is convenient to
consider now the function d

dx
F (x). An essential observation is that this function contains no

contribution coming from the derivative of (C.6) on the upper limit due to vanishing of the
integrand at ν0 = 0, 1

w
. We represent it in the following form:

dF(x)

dx
=
∫ 1/w

0
dν0

∫ ∞

1
dν1

∫ 1

0

dν2 e−γw(ν1+ν2+2ν0)/2X(ν0, ν1, ν2)√
ν1(ν1 − 1)ν2(ν2 − 1)(1 + wν1)(1 + wν2)

(C.7)

where a rational function X contains all other terms resulting from the differentiation. It is a
crucial fact that X can be further decomposed into partial fractions with respect to ν0, yielding

X(ν0, ν1, ν2) =
∑
i=1,2

(−1)i+1

[
ai(γ + d12)

(ν0 + νi)2
+

γ bi + cid12

ν0 + νi

+ 2wγνi

]
(C.8)

with functions ai = νi(νi − 1)(1 + wνi), bi = 1 − 2(1 −w)νi − 3wν2
i , ci = 1 − 2νi −wν2

i for
i = 1, 2 and d12 = [(1 + wν1)(1 + wν2)]−1. Substituting (C.8) in (C.7), one readily sees that
integrals over ν0 can be easily performed while remaining integrations over ν1,2 get completely
decoupled in each term of the sum, leading finally to (44).
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[125] Pruisken A M M and Schäfer L 1982 Nucl. Phys. B 200 20
[126] Fyodorov Y V and Mirlin A D 1994 Int. J. Mod. Phys. 8 3795


	1. Introduction
	2. Reflection, time delays and resonance spectrum
	3. Correlation functions
	3.1. Impedance
	3.2. Scattering matrix
	3.3. Reflection

	4. Distribution functions
	4.1. Single-channel scattering
	4.2. Beyond single channel

	5. Conclusions and open problems
	Acknowledgments
	Appendix A. Statistics of the local Green function in the GSE
	Appendix B. Disordered
	Appendix C. Analytic continuation (40) and GOE result (44)

	References

